pounce/backend/app/models/seo_data.py
yves.gugger ded6c34100 feat: Add SEO Juice Detector (Tycoon feature)
From analysis_3.md - Strategie 3: SEO-Daten & Backlinks:
'SEO-Agenturen suchen Domains wegen der Power (Backlinks).
Solche Domains sind für SEOs 100-500€ wert, auch wenn der Name hässlich ist.'

BACKEND:
- Model: DomainSEOData for caching SEO metrics
- Service: seo_analyzer.py with Moz API integration
  - Falls back to estimation if no API keys
  - Detects notable links (Wikipedia, .gov, .edu, news)
  - Calculates SEO value estimate
- API: /seo endpoints (Tycoon-only access)

FRONTEND:
- /command/seo page with full SEO analysis
- Upgrade prompt for non-Tycoon users
- Notable links display (Wikipedia, .gov, .edu, news)
- Top backlinks with authority scores
- Recent searches saved locally

SIDEBAR:
- Added 'SEO Juice' nav item with 'Tycoon' badge

DOCS:
- Updated DATABASE_MIGRATIONS.md with domain_seo_data table
- Added SEO API endpoints documentation
- Added Moz API environment variables info
2025-12-10 11:58:05 +01:00

117 lines
4.1 KiB
Python

"""
SEO Data models for the "SEO Juice Detector" feature.
This implements "Strategie 3: SEO-Daten & Backlinks" from analysis_3.md:
"SEO-Agenturen suchen Domains nicht wegen dem Namen, sondern wegen der Power (Backlinks).
Wenn eine Domain droppt, prüfst du nicht nur den Namen, sondern ob Backlinks existieren."
This is a TYCOON-ONLY feature ($29/month).
DATABASE TABLE TO CREATE:
- domain_seo_data - Cached SEO metrics for domains
Run migrations: alembic upgrade head
"""
from datetime import datetime
from typing import Optional, List
from sqlalchemy import String, DateTime, Float, Integer, Text, ForeignKey, Boolean, JSON
from sqlalchemy.orm import Mapped, mapped_column
from app.database import Base
class DomainSEOData(Base):
"""
Cached SEO data for domains.
Stores backlink data, domain authority, and other SEO metrics
from Moz API or alternative sources.
From analysis_3.md:
"Domain `alte-bäckerei-münchen.de` ist frei.
Hat Links von `sueddeutsche.de` und `wikipedia.org`."
"""
__tablename__ = "domain_seo_data"
id: Mapped[int] = mapped_column(primary_key=True, index=True)
domain: Mapped[str] = mapped_column(String(255), unique=True, nullable=False, index=True)
# Moz metrics
domain_authority: Mapped[Optional[int]] = mapped_column(Integer, nullable=True) # 0-100
page_authority: Mapped[Optional[int]] = mapped_column(Integer, nullable=True) # 0-100
spam_score: Mapped[Optional[int]] = mapped_column(Integer, nullable=True) # 0-100
# Backlink data
total_backlinks: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)
referring_domains: Mapped[Optional[int]] = mapped_column(Integer, nullable=True)
# Top backlinks (JSON array of {domain, authority, type})
top_backlinks: Mapped[Optional[dict]] = mapped_column(JSON, nullable=True)
# Notable backlinks (high-authority sites)
notable_backlinks: Mapped[Optional[str]] = mapped_column(Text, nullable=True) # Comma-separated
has_wikipedia_link: Mapped[bool] = mapped_column(Boolean, default=False)
has_gov_link: Mapped[bool] = mapped_column(Boolean, default=False)
has_edu_link: Mapped[bool] = mapped_column(Boolean, default=False)
has_news_link: Mapped[bool] = mapped_column(Boolean, default=False)
# Estimated value based on SEO
seo_value_estimate: Mapped[Optional[float]] = mapped_column(Float, nullable=True)
# Data source
data_source: Mapped[str] = mapped_column(String(50), default="moz") # moz, ahrefs, majestic, estimated
# Cache management
last_updated: Mapped[datetime] = mapped_column(DateTime, default=datetime.utcnow)
expires_at: Mapped[Optional[datetime]] = mapped_column(DateTime, nullable=True)
# Request tracking
fetch_count: Mapped[int] = mapped_column(Integer, default=0)
def __repr__(self) -> str:
return f"<DomainSEOData {self.domain} DA:{self.domain_authority}>"
@property
def is_expired(self) -> bool:
if not self.expires_at:
return True
return datetime.utcnow() > self.expires_at
@property
def seo_score(self) -> int:
"""Calculate overall SEO score (0-100)."""
if not self.domain_authority:
return 0
score = self.domain_authority
# Boost for notable links
if self.has_wikipedia_link:
score = min(100, score + 10)
if self.has_gov_link:
score = min(100, score + 5)
if self.has_edu_link:
score = min(100, score + 5)
if self.has_news_link:
score = min(100, score + 3)
# Penalty for spam
if self.spam_score and self.spam_score > 30:
score = max(0, score - (self.spam_score // 5))
return score
@property
def value_category(self) -> str:
"""Categorize SEO value for display."""
score = self.seo_score
if score >= 60:
return "High Value"
elif score >= 40:
return "Medium Value"
elif score >= 20:
return "Low Value"
return "Minimal"