pounce/backend/app/api/auctions.py
yves.gugger 88eca582e5 feat: Remove ALL mock data - real scraped data only
MOCK DATA REMOVED:
- Removed ALL hardcoded auction data from auctions.py
- Now uses real-time scraping from ExpiredDomains.net
- Database stores scraped auctions (domain_auctions table)
- Scraping runs hourly via scheduler (:30 each hour)

AUCTION SCRAPER SERVICE:
- Web scraping from ExpiredDomains.net (aggregator)
- Rate limiting per platform (10 req/min)
- Database caching to minimize requests
- Cleanup of ended auctions (auto-deactivate)
- Scrape logging for monitoring

STRIPE INTEGRATION:
- Full payment flow: Checkout → Webhook → Subscription update
- Customer Portal for managing subscriptions
- Price IDs configurable via env vars
- Handles: checkout.completed, subscription.updated/deleted, payment.failed

EMAIL SERVICE (SMTP):
- Beautiful HTML email templates with pounce branding
- Domain available alerts
- Price change notifications
- Subscription confirmations
- Weekly digest emails
- Configurable via SMTP_* env vars

NEW SUBSCRIPTION TIERS:
- Scout (Free): 5 domains, daily checks
- Trader (€19/mo): 50 domains, hourly, portfolio, valuation
- Tycoon (€49/mo): 500+ domains, realtime, API, bulk tools

DATABASE CHANGES:
- domain_auctions table for scraped data
- auction_scrape_logs for monitoring
- stripe_customer_id on users
- stripe_subscription_id on subscriptions
- portfolio_domain relationships fixed

ENV VARS ADDED:
- STRIPE_SECRET_KEY, STRIPE_WEBHOOK_SECRET
- STRIPE_PRICE_TRADER, STRIPE_PRICE_TYCOON
- SMTP_HOST, SMTP_PORT, SMTP_USER, SMTP_PASSWORD
- SMTP_FROM_EMAIL, SMTP_FROM_NAME
2025-12-08 14:08:52 +01:00

602 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Smart Pounce - Domain Auction Aggregator
This module provides auction data from our database of scraped listings.
Data is scraped from public auction platforms - NO APIS used.
Data Sources (Web Scraping):
- ExpiredDomains.net (aggregator)
- GoDaddy Auctions (public listings)
- Sedo (public search)
- NameJet (public auctions)
IMPORTANT:
- All data comes from web scraping of public pages
- No mock data - everything is real scraped data
- Data is cached in PostgreSQL/SQLite for performance
- Scraper runs on schedule (see scheduler.py)
Legal Note (Switzerland):
- No escrow/payment handling = no GwG/FINMA requirements
- Users click through to external platforms
- We only provide market intelligence
"""
import logging
from datetime import datetime, timedelta
from typing import Optional, List
from fastapi import APIRouter, Depends, Query, HTTPException
from pydantic import BaseModel
from sqlalchemy import select, func, and_
from sqlalchemy.ext.asyncio import AsyncSession
from app.database import get_db
from app.api.deps import get_current_user, get_current_user_optional
from app.models.user import User
from app.models.auction import DomainAuction, AuctionScrapeLog
from app.services.valuation import valuation_service
from app.services.auction_scraper import auction_scraper
logger = logging.getLogger(__name__)
router = APIRouter()
# ============== Schemas ==============
class AuctionValuation(BaseModel):
"""Valuation details for an auction."""
estimated_value: float
value_ratio: float
potential_profit: float
confidence: str
valuation_formula: str
class AuctionListing(BaseModel):
"""A domain auction listing from the database."""
domain: str
platform: str
platform_url: str
current_bid: float
currency: str
num_bids: int
end_time: datetime
time_remaining: str
buy_now_price: Optional[float] = None
reserve_met: Optional[bool] = None
traffic: Optional[int] = None
age_years: Optional[int] = None
tld: str
affiliate_url: str
valuation: Optional[AuctionValuation] = None
class Config:
from_attributes = True
class AuctionSearchResponse(BaseModel):
"""Response for auction search."""
auctions: List[AuctionListing]
total: int
platforms_searched: List[str]
last_updated: datetime
data_source: str = "scraped"
valuation_note: str = (
"Values are estimated using our algorithm: "
"$50 × Length × TLD × Keyword × Brand factors. "
"See /portfolio/valuation/{domain} for detailed breakdown."
)
class PlatformStats(BaseModel):
"""Statistics for an auction platform."""
platform: str
active_auctions: int
avg_bid: float
ending_soon: int
class ScrapeStatus(BaseModel):
"""Status of auction scraping."""
last_scrape: Optional[datetime]
total_auctions: int
platforms: List[str]
next_scrape: Optional[datetime]
# ============== Helper Functions ==============
def _format_time_remaining(end_time: datetime) -> str:
"""Format time remaining in human-readable format."""
delta = end_time - datetime.utcnow()
if delta.total_seconds() <= 0:
return "Ended"
hours = int(delta.total_seconds() // 3600)
minutes = int((delta.total_seconds() % 3600) // 60)
if hours > 24:
days = hours // 24
return f"{days}d {hours % 24}h"
elif hours > 0:
return f"{hours}h {minutes}m"
else:
return f"{minutes}m"
def _get_affiliate_url(platform: str, domain: str, auction_url: str) -> str:
"""Get affiliate URL for a platform."""
# Use the scraped auction URL directly
if auction_url:
return auction_url
# Fallback to platform search
platform_urls = {
"GoDaddy": f"https://auctions.godaddy.com/trpItemListing.aspx?domain={domain}",
"Sedo": f"https://sedo.com/search/?keyword={domain}",
"NameJet": f"https://www.namejet.com/Pages/Auctions/BackorderSearch.aspx?q={domain}",
"ExpiredDomains": f"https://www.expireddomains.net/domain-name-search/?q={domain}",
"Afternic": f"https://www.afternic.com/search?k={domain}",
}
return platform_urls.get(platform, f"https://www.google.com/search?q={domain}+auction")
async def _convert_to_listing(
auction: DomainAuction,
db: AsyncSession,
include_valuation: bool = True
) -> AuctionListing:
"""Convert database auction to API response."""
valuation_data = None
if include_valuation:
try:
result = await valuation_service.estimate_value(auction.domain, db, save_result=False)
if "error" not in result:
estimated_value = result["estimated_value"]
value_ratio = round(estimated_value / auction.current_bid, 2) if auction.current_bid > 0 else 99
valuation_data = AuctionValuation(
estimated_value=estimated_value,
value_ratio=value_ratio,
potential_profit=round(estimated_value - auction.current_bid, 2),
confidence=result.get("confidence", "medium"),
valuation_formula=result.get("calculation", {}).get("formula", "N/A"),
)
except Exception as e:
logger.error(f"Valuation error for {auction.domain}: {e}")
return AuctionListing(
domain=auction.domain,
platform=auction.platform,
platform_url=auction.auction_url or "",
current_bid=auction.current_bid,
currency=auction.currency,
num_bids=auction.num_bids,
end_time=auction.end_time,
time_remaining=_format_time_remaining(auction.end_time),
buy_now_price=auction.buy_now_price,
reserve_met=auction.reserve_met,
traffic=auction.traffic,
age_years=auction.age_years,
tld=auction.tld,
affiliate_url=_get_affiliate_url(auction.platform, auction.domain, auction.auction_url),
valuation=valuation_data,
)
# ============== Endpoints ==============
@router.get("", response_model=AuctionSearchResponse)
async def search_auctions(
keyword: Optional[str] = Query(None, description="Search keyword in domain names"),
tld: Optional[str] = Query(None, description="Filter by TLD (e.g., 'com', 'io')"),
platform: Optional[str] = Query(None, description="Filter by platform"),
min_bid: Optional[float] = Query(None, ge=0, description="Minimum current bid"),
max_bid: Optional[float] = Query(None, ge=0, description="Maximum current bid"),
ending_soon: bool = Query(False, description="Only show auctions ending in < 1 hour"),
sort_by: str = Query("ending", enum=["ending", "bid_asc", "bid_desc", "bids", "value_ratio"]),
limit: int = Query(20, le=100),
offset: int = Query(0, ge=0),
current_user: Optional[User] = Depends(get_current_user_optional),
db: AsyncSession = Depends(get_db),
):
"""
Search domain auctions from our scraped database.
All data comes from web scraping of public auction pages.
NO mock data - everything is real scraped data.
Data Sources:
- ExpiredDomains.net (aggregator)
- GoDaddy Auctions (coming soon)
- Sedo (coming soon)
- NameJet (coming soon)
Smart Pounce Strategy:
- Look for value_ratio > 1.0 (estimated value exceeds current bid)
- Focus on auctions ending soon with low bid counts
"""
# Build query
query = select(DomainAuction).where(DomainAuction.is_active == True)
if keyword:
query = query.where(DomainAuction.domain.ilike(f"%{keyword}%"))
if tld:
query = query.where(DomainAuction.tld == tld.lower().lstrip("."))
if platform:
query = query.where(DomainAuction.platform == platform)
if min_bid is not None:
query = query.where(DomainAuction.current_bid >= min_bid)
if max_bid is not None:
query = query.where(DomainAuction.current_bid <= max_bid)
if ending_soon:
cutoff = datetime.utcnow() + timedelta(hours=1)
query = query.where(DomainAuction.end_time <= cutoff)
# Count total
count_query = select(func.count()).select_from(query.subquery())
total_result = await db.execute(count_query)
total = total_result.scalar() or 0
# Sort
if sort_by == "ending":
query = query.order_by(DomainAuction.end_time.asc())
elif sort_by == "bid_asc":
query = query.order_by(DomainAuction.current_bid.asc())
elif sort_by == "bid_desc":
query = query.order_by(DomainAuction.current_bid.desc())
elif sort_by == "bids":
query = query.order_by(DomainAuction.num_bids.desc())
else:
query = query.order_by(DomainAuction.end_time.asc())
# Pagination
query = query.offset(offset).limit(limit)
result = await db.execute(query)
auctions = list(result.scalars().all())
# Convert to response with valuations
listings = []
for auction in auctions:
listing = await _convert_to_listing(auction, db, include_valuation=True)
listings.append(listing)
# Sort by value_ratio if requested (after valuation)
if sort_by == "value_ratio":
listings.sort(
key=lambda x: x.valuation.value_ratio if x.valuation else 0,
reverse=True
)
# Get platforms searched
platforms_result = await db.execute(
select(DomainAuction.platform).distinct()
)
platforms = [p for (p,) in platforms_result.all()]
# Get last update time
last_update_result = await db.execute(
select(func.max(DomainAuction.updated_at))
)
last_updated = last_update_result.scalar() or datetime.utcnow()
return AuctionSearchResponse(
auctions=listings,
total=total,
platforms_searched=platforms or ["No data yet - scrape pending"],
last_updated=last_updated,
data_source="scraped from public auction sites",
)
@router.get("/ending-soon", response_model=List[AuctionListing])
async def get_ending_soon(
hours: int = Query(1, ge=1, le=24, description="Hours until end"),
limit: int = Query(10, le=50),
current_user: Optional[User] = Depends(get_current_user_optional),
db: AsyncSession = Depends(get_db),
):
"""
Get auctions ending soon - best opportunities for sniping.
Data is scraped from public auction sites - no mock data.
"""
cutoff = datetime.utcnow() + timedelta(hours=hours)
query = (
select(DomainAuction)
.where(
and_(
DomainAuction.is_active == True,
DomainAuction.end_time <= cutoff,
DomainAuction.end_time > datetime.utcnow(),
)
)
.order_by(DomainAuction.end_time.asc())
.limit(limit)
)
result = await db.execute(query)
auctions = list(result.scalars().all())
listings = []
for auction in auctions:
listing = await _convert_to_listing(auction, db, include_valuation=True)
listings.append(listing)
return listings
@router.get("/hot", response_model=List[AuctionListing])
async def get_hot_auctions(
limit: int = Query(10, le=50),
current_user: Optional[User] = Depends(get_current_user_optional),
db: AsyncSession = Depends(get_db),
):
"""
Get hottest auctions by bidding activity.
Data is scraped from public auction sites - no mock data.
"""
query = (
select(DomainAuction)
.where(DomainAuction.is_active == True)
.order_by(DomainAuction.num_bids.desc())
.limit(limit)
)
result = await db.execute(query)
auctions = list(result.scalars().all())
listings = []
for auction in auctions:
listing = await _convert_to_listing(auction, db, include_valuation=True)
listings.append(listing)
return listings
@router.get("/stats", response_model=List[PlatformStats])
async def get_platform_stats(
current_user: Optional[User] = Depends(get_current_user_optional),
db: AsyncSession = Depends(get_db),
):
"""
Get statistics for each auction platform.
Data is scraped from public auction sites - no mock data.
"""
# Get stats per platform
stats_query = (
select(
DomainAuction.platform,
func.count(DomainAuction.id).label("count"),
func.avg(DomainAuction.current_bid).label("avg_bid"),
)
.where(DomainAuction.is_active == True)
.group_by(DomainAuction.platform)
)
result = await db.execute(stats_query)
platform_data = result.all()
# Get ending soon counts
cutoff = datetime.utcnow() + timedelta(hours=1)
ending_query = (
select(
DomainAuction.platform,
func.count(DomainAuction.id).label("ending_count"),
)
.where(
and_(
DomainAuction.is_active == True,
DomainAuction.end_time <= cutoff,
)
)
.group_by(DomainAuction.platform)
)
ending_result = await db.execute(ending_query)
ending_data = {p: c for p, c in ending_result.all()}
stats = []
for platform, count, avg_bid in platform_data:
stats.append(PlatformStats(
platform=platform,
active_auctions=count,
avg_bid=round(avg_bid or 0, 2),
ending_soon=ending_data.get(platform, 0),
))
return sorted(stats, key=lambda x: x.active_auctions, reverse=True)
@router.get("/scrape-status", response_model=ScrapeStatus)
async def get_scrape_status(
current_user: Optional[User] = Depends(get_current_user_optional),
db: AsyncSession = Depends(get_db),
):
"""Get status of auction scraping."""
# Get last successful scrape
last_scrape_query = (
select(AuctionScrapeLog)
.where(AuctionScrapeLog.status == "success")
.order_by(AuctionScrapeLog.completed_at.desc())
.limit(1)
)
result = await db.execute(last_scrape_query)
last_log = result.scalar_one_or_none()
# Get total auctions
total_query = select(func.count(DomainAuction.id)).where(DomainAuction.is_active == True)
total_result = await db.execute(total_query)
total = total_result.scalar() or 0
# Get platforms
platforms_result = await db.execute(
select(DomainAuction.platform).distinct()
)
platforms = [p for (p,) in platforms_result.all()]
return ScrapeStatus(
last_scrape=last_log.completed_at if last_log else None,
total_auctions=total,
platforms=platforms or ["Pending initial scrape"],
next_scrape=datetime.utcnow() + timedelta(hours=1), # Approximation
)
@router.post("/trigger-scrape")
async def trigger_scrape(
current_user: User = Depends(get_current_user),
db: AsyncSession = Depends(get_db),
):
"""
Manually trigger auction scraping (admin only for now).
In production, this runs automatically every hour.
"""
try:
result = await auction_scraper.scrape_all_platforms(db)
return {
"status": "success",
"message": "Scraping completed",
"result": result,
}
except Exception as e:
logger.error(f"Manual scrape failed: {e}")
raise HTTPException(status_code=500, detail=f"Scrape failed: {str(e)}")
@router.get("/opportunities")
async def get_smart_opportunities(
current_user: User = Depends(get_current_user),
db: AsyncSession = Depends(get_db),
):
"""
Smart Pounce Algorithm - Find the best auction opportunities.
Analyzes scraped auction data (NO mock data) to find:
- Auctions ending soon with low bids
- Domains with high estimated value vs current bid
Opportunity Score = value_ratio × time_factor × bid_factor
"""
# Get active auctions
query = (
select(DomainAuction)
.where(DomainAuction.is_active == True)
.order_by(DomainAuction.end_time.asc())
.limit(50)
)
result = await db.execute(query)
auctions = list(result.scalars().all())
if not auctions:
return {
"opportunities": [],
"message": "No active auctions. Trigger a scrape to fetch latest data.",
"valuation_method": "Our algorithm calculates: $50 × Length × TLD × Keyword × Brand factors.",
"strategy_tips": [
"🔄 Click 'Trigger Scrape' to fetch latest auction data",
"🎯 Look for value_ratio > 1.0 (undervalued domains)",
"⏰ Auctions ending soon often have best opportunities",
],
"generated_at": datetime.utcnow().isoformat(),
}
opportunities = []
for auction in auctions:
valuation = await valuation_service.estimate_value(auction.domain, db, save_result=False)
if "error" in valuation:
continue
estimated_value = valuation["estimated_value"]
current_bid = auction.current_bid
value_ratio = estimated_value / current_bid if current_bid > 0 else 10
hours_left = (auction.end_time - datetime.utcnow()).total_seconds() / 3600
time_factor = 2.0 if hours_left < 1 else (1.5 if hours_left < 4 else 1.0)
bid_factor = 1.5 if auction.num_bids < 10 else 1.0
opportunity_score = value_ratio * time_factor * bid_factor
listing = await _convert_to_listing(auction, db, include_valuation=True)
opportunities.append({
"auction": listing.model_dump(),
"analysis": {
"estimated_value": estimated_value,
"current_bid": current_bid,
"value_ratio": round(value_ratio, 2),
"potential_profit": round(estimated_value - current_bid, 2),
"opportunity_score": round(opportunity_score, 2),
"time_factor": time_factor,
"bid_factor": bid_factor,
"recommendation": (
"Strong buy" if opportunity_score > 5 else
"Consider" if opportunity_score > 2 else
"Monitor"
),
"reasoning": _get_opportunity_reasoning(
value_ratio, hours_left, auction.num_bids, opportunity_score
),
}
})
opportunities.sort(key=lambda x: x["analysis"]["opportunity_score"], reverse=True)
return {
"opportunities": opportunities[:10],
"data_source": "Real scraped auction data (no mock data)",
"valuation_method": (
"Our algorithm calculates: $50 × Length × TLD × Keyword × Brand factors. "
"See /portfolio/valuation/{domain} for detailed breakdown of any domain."
),
"strategy_tips": [
"🎯 Focus on value_ratio > 1.0 (estimated value exceeds current bid)",
"⏰ Auctions ending in < 1 hour often have best snipe opportunities",
"📉 Low bid count (< 10) might indicate overlooked gems",
"💡 Premium TLDs (.com, .ai, .io) have highest aftermarket demand",
],
"generated_at": datetime.utcnow().isoformat(),
}
def _get_opportunity_reasoning(value_ratio: float, hours_left: float, num_bids: int, score: float) -> str:
"""Generate human-readable reasoning for the opportunity."""
reasons = []
if value_ratio > 2:
reasons.append(f"Significantly undervalued ({value_ratio:.1f}× estimated value)")
elif value_ratio > 1:
reasons.append(f"Undervalued ({value_ratio:.1f}× estimated value)")
else:
reasons.append(f"Current bid exceeds our estimate ({value_ratio:.2f}×)")
if hours_left < 1:
reasons.append("⚡ Ending very soon - final chance to bid")
elif hours_left < 4:
reasons.append("⏰ Ending soon - limited time remaining")
if num_bids < 5:
reasons.append("📉 Very low competition - potential overlooked opportunity")
elif num_bids < 10:
reasons.append("📊 Moderate competition")
else:
reasons.append(f"🔥 High demand ({num_bids} bids)")
return " | ".join(reasons)